Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Cell Death Dis ; 15(4): 250, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582754

RESUMO

Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Transdução de Sinais , Apoptose , Células-Tronco Mesenquimais/metabolismo
2.
J Clin Invest ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530364

RESUMO

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs), selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane expression in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is co-expressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the pro-resolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10 or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a new therapeutic target for the protection of neuropathy and chronic pain.

3.
Thorac Cancer ; 15(9): 702-714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316626

RESUMO

BACKGROUND: Breast cancer has the highest incidence rate of cancer worldwide, and brain metastases (BrM) are among the most malignant cases. While some patients have benefited from immune checkpoint inhibitors (ICIs), the complex anatomical structure of the brain and the heterogeneity of metastatic tumors have made it difficult to characterize the tumor immune microenvironment (TME) of metastatic tumors. METHODS: To address this, we used single-cell RNA sequencing (scRNA-seq) to analyze immune cells in the cerebrospinal fluid (CSF) of BrM patients with breast cancer, thereby providing a comprehensive view of the immune microenvironment landscape of BrM. RESULTS: Based on canonical marker genes, we identified nine cell types, and further identified their subtypes through differential expression gene (DEG) analysis. We compared the changes in cells and functions in the immune microenvironment of patients with different prognoses. Our analysis revealed a series of genes that promote tumor immune function (CCR5, LYZ, IGKC, MS4A1, etc.) and inhibit tumor immune function (SCGB2A2, CD24, etc.). CONCLUSIONS: The scRNA-seq in CSF provides a noninvasive method to describe the TME of breast cancer patients and guide immunotherapy.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias Encefálicas/genética , Encéfalo , Inibidores de Checkpoint Imunológico , Imunoterapia , Microambiente Tumoral/genética
4.
iScience ; 27(2): 108721, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303704

RESUMO

n-3 polyunsaturated fatty acids (PUFAs) are closely related to the progression of numerous chronic inflammatory diseases, but the role of n-3 PUFAs in the intervertebral disc degeneration (IVDD) remains unclear. In this study, male C57BL/6 wildtype mice (WT group, n = 30) and fat-1 transgenic mice (TG group, n = 30) were randomly selected to construct the IVDD model. The results demonstrated that the optimized composition of PUFAs in the TG mice had a significant impact on delaying IVDD and cellular senescence of intervertebral disc (IVD). Mechanismly, n-3 PUFAs inhibited IVD senescence by alleviating NCOA4-mediated iron overload. NCOA4 overexpression promoted iron overload and weakened the pro-proliferation and anti-senescence effect of DHA on the IVD cells. Furthermore, this study futher revealed n-3 PUFAs downregulated NCOA4 expression by inactiviting the LGR5/ß-catenin signaling pathway. This study provides an important theoretical basis for preventing and treating IVDD and low back pain.

5.
Int J Biol Macromol ; 262(Pt 1): 129363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244743

RESUMO

The development of biobased fire-safe thermosets with recyclability heralds the switch for a transition towards a circular economy. In this framework, we introduced a novel high-performance bio-epoxy vitrimer (named GVD), which was fabricated by forming a crosslinking network between bio-epoxy glycerol triglycidyl ether (Gte), varying amounts of reactive flame-retardant agent 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) (0-7 wt%) and a vanillin-based hardener (VA) with imine bonds. For instance, the epoxy vitrimer GVD5, featuring a DOPO content of 5 wt%, achieved a V-0 rating in the vertical burning test (UL-94) and obtained a limiting oxygen index (LOI) value of 31 %, surpassing the performance of pristine epoxy. Furthermore, the peak heat release rate and total heat release of GVD5 were reduced by 38.2 % and 26.3 %, respectively, compared to pristine epoxy. The GVD vitrimers further demonstrated exceptional reprocessability and recyclability, attributed to the presence of dynamic imine bonds within the topological crosslinking network. Remarkably, the epoxy vitrimers maintained the mechanical properties of the parent epoxy. Therefore, this work provides a facile strategy for fabricating high-performance and multi-functional bio-epoxy thermosets.


Assuntos
Resinas Epóxi , Retardadores de Chama , Éteres , Etil-Éteres , Iminas
6.
Dalton Trans ; 53(6): 2534-2540, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38234156

RESUMO

Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.

7.
Cell Mol Biol Lett ; 29(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172650

RESUMO

BACKGROUND: Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS: The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS: Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isoproterenol , Cardiomegalia/genética , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo
8.
Adv Mater ; 36(5): e2310078, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947048

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is approved in the treatment of hematological malignancies, but remains far from satisfactory in solid tumor treatment due to inadequate intra-tumor CAR-T cell infiltration. Herein, an injectable supramolecular hydrogel system, based on self-assembly between cationic polymer mPEG-PCL-PEI (PPP) conjugated with T cell targeting anti-CD3e f(ab')2 fragment and α-cyclodextrin (α-CD), is designed to load plasmid CAR (pCAR) with a T cell specific CD2 promoter, which successfully achieves in situ fabrication and effective accumulation of CAR-T cells at the tumor site in humanized mice models. More importantly, due to this tumor microenvironment reprogramming, secretion of cellular inflammatory cytokines (interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ)) or tumor killer protein granzyme B is significantly promoted, which reverses the immunosuppressive microenvironment and significantly enhances the intra-tumor CAR-T cells and cytotoxic T cells infiltration. To the best of the current knowledge, this is a pioneer report of using injectable supramolecular hydrogel for in situ reprogramming CAR-T cells, which might be beneficial for solid tumor CAR-T immunotherapy.


Assuntos
Hidrogéis , Neoplasias , Animais , Camundongos , Citocinas/metabolismo , Imunoterapia , Neoplasias/patologia , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral , Humanos
9.
Emerg Microbes Infect ; 13(1): 2287682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994795

RESUMO

The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like particle (VLP) vaccine based on the insect cell-baculovirus expression system. Single immunization of the H5N1 VLP vaccines induced high levels of HI antibody titres and provided effective protection against homologous virus challenge comparable to the commercial inactivated vaccine. Meanwhile, we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the adjuvants ISA 201 and ISA 71 and evaluated whether the two adjuvants could induce broadly protective immunity. The ISA 71 adjuvanted vaccine induced significantly higher levels of Th1 and Th2 immune responses and provided superior cross-protection against antigenically divergent H5N1 virus challenge than the ISA 201 adjuvanted vaccine. Importantly, increasing the vaccine dose could further enhance the cross-protective efficacy of H5N1 VLP vaccine and confer completely sterilizing protection against antigenically divergent H5N1 virus challenge, which was mediated by neutralizing antibodies. Our results suggest that the H5N1 VLP vaccine can provide broad-spectrum protection against divergent H5N1 influenza viruses as determined by adjuvant and vaccine dose.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Vacinas de Partículas Semelhantes a Vírus , Animais , Galinhas , Eficácia de Vacinas , Anticorpos Antivirais , Imunização , Adjuvantes Imunológicos
10.
Orthop Surg ; 16(1): 183-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933407

RESUMO

OBJECTIVE: Nowadays, more than 90% of people over 50 years suffer from intervertebral disc degeneration (IDD), but there are exist no ideal drugs. The aim of this study is to identify a new drug for IDD. METHODS: An approved small molecular drug library including 2040 small molecular compounds was used here. We found that taurocholic acid sodium hydrate (NAT) could induce chondrogenesis and osteogenesis in mesenchymal stem cells (MSCs). Then, an in vivo mouse model of IDD was established and the coccygeal discs transcriptome analysis and surface plasmon resonance analysis (SPR) integrated with liquid chromatography-tandem mass spectrometry assay (LC-MS) were performed in this study to study the therapy effect and target proteins of NAT for IDD. Micro-CT was used to evaluate the cancellous bone. The expression of osteogenic (OCN, RNX2), chondrogenic (COL2A1, SOX9), and the target related (ERK1/2, p-ERK1/2) proteins were detected. The alkaline phosphatase staining was performed to estimate osteogenic differentiation. Blood routine and blood biochemistry indexes were analyzed for the safety of NAT. RESULTS: The results showed that NAT could induce chondrogenesis and osteogenesis in MSCs. Further experiments confirmed NAT could ameliorate the secondary osteoporosis and delay the development of IDD in mice. Transcriptome analysis identified 128 common genes and eight Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for NAT. SPR-LC-MS assay detected 57 target proteins for NAT, including MAPK3 (mitogen-activated protein kinase 3), also known as ERK1 (extracellular regulated protein kinase 1). Further verification experiment confirmed that NAT significantly reduced the expression of ERK1/2 phosphorylation. CONCLUSION: NAT would induce chondrogenesis and osteogenesis of MSCs, ameliorate the secondary osteoporosis and delay the progression of IDD in mice by targeting MAPK3.Furthermore, MAPK3, especially the phosphorylation of MAPK3, would be a potential therapeutic target for IDD treatment.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Osteoporose , Humanos , Camundongos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Proteína Quinase 3 Ativada por Mitógeno , Osteogênese/genética , Reposicionamento de Medicamentos , Sódio
11.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065706

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Assuntos
Antígeno B7-H1 , Imunomodulação , Células-Tronco Mesenquimais , Humanos , Antígeno B7-H1/metabolismo , Células-Tronco Mesenquimais/imunologia , Linfócitos T/metabolismo
12.
ACS Synth Biol ; 13(1): 61-67, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38100561

RESUMO

Halomonas bluephagenesis is a halophilic bacterium capable of efficiently producing polyhydroxyalkanoates and other valuable chemicals through high salinity open fermentation, offering an appealing platform for next-generation industrial biotechnology. Various techniques have been developed to engineer Halomonas bluephagenesis, each with its inherent shortcomings. Genome editing methods often entail complex and time-consuming processes, while flexible expression systems relying on plasmids necessitate the use of antibiotics. In this study, we developed a stable recombinant plasmid vector, pHbPBC, based on a novel hbpB/hbpC toxin-antitoxin system found within the endogenous plasmid of Halomonas bluephagenesis. Remarkably, pHbPBC exhibited exceptional stability during 7 days of continuous subculture, eliminating the need for antibiotics or other selection pressures. This stability even rivaled genomic integration, all while achieving higher levels of heterologous expression. Our research introduces a novel approach for genetically modifying and harnessing nonmodel halophilic bacteria, contributing to the advancement of next-generation industrial biotechnology.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Sistemas Toxina-Antitoxina , Halomonas/genética , Halomonas/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Biotecnologia/métodos , Antibacterianos/metabolismo
13.
Sci Rep ; 13(1): 22170, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092819

RESUMO

This study contributes to the field of sustainability by analyzing changes in firms following the adoption of new environmental protection laws to meet community sustainability needs. Focusing on the Chinese context, it examined the relationship between firms' environmental protection measures (i.e., corporate green behavior) and profitability (i.e., corporate tax avoidance). The moderating roles of environmental uncertainty and digital technology application in this relationship were also investigated. The findings offer insights into the complex dynamics linking firms' environmental initiatives to their business outcomes and financial decisions within the framework of a sustainable community. Ultimately, this study highlights the importance and implications of sustainable practices for both the environment and corporate financial performance. Firms' environmental behaviors are enablers of sustainable communities by deploying natural resources and creating a more resilient economy through active community participation in green production models.

14.
MedComm (2020) ; 4(6): e456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116061

RESUMO

O-linked-ß-N-acetylglucosamine (O-GlcNAcylation) is a distinctive posttranslational protein modification involving the coordinated action of O-GlcNAc transferase and O-GlcNAcase, primarily targeting serine or threonine residues in various proteins. This modification impacts protein functionality, influencing stability, protein-protein interactions, and localization. Its interaction with other modifications such as phosphorylation and ubiquitination is becoming increasingly evident. Dysregulation of O-GlcNAcylation is associated with numerous human diseases, including diabetes, nervous system degeneration, and cancers. This review extensively explores the regulatory mechanisms of O-GlcNAcylation, its effects on cellular physiology, and its role in the pathogenesis of diseases. It examines the implications of aberrant O-GlcNAcylation in diabetes and tumorigenesis, highlighting novel insights into its potential role in cardiovascular diseases. The review also discusses the interplay of O-GlcNAcylation with other protein modifications and its impact on cell growth and metabolism. By synthesizing current research, this review elucidates the multifaceted roles of O-GlcNAcylation, providing a comprehensive reference for future studies. It underscores the potential of targeting the O-GlcNAcylation cycle in developing novel therapeutic strategies for various pathologies.

15.
IEEE Trans Cybern ; PP2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145521

RESUMO

The quality of videos is the primary concern of video service providers. Built upon deep neural networks, video quality assessment (VQA) has rapidly progressed. Although existing works have introduced the knowledge of the human visual system (HVS) into VQA, there are still some limitations that hinder the full exploitation of HVS, including incomplete modeling with few HVS characteristics and insufficient connection among these characteristics. In this article, we present a novel spatial-temporal VQA method termed HVS-5M, wherein we design five modules to simulate five characteristics of HVS and create a bioinspired connection among these modules in a cooperative manner. Specifically, on the side of the spatial domain, the visual saliency module first extracts a saliency map. Then, the content-dependency and the edge masking modules extract the content and edge features, respectively, which are both weighted by the saliency map to highlight those regions that human beings may be interested in. On the other side of the temporal domain, the motion perception module extracts the dynamic temporal features. Besides, the temporal hysteresis module simulates the memory mechanism of human beings and comprehensively evaluates the video quality according to the fusion features from the spatial and temporal domains. Extensive experiments show that our HVS-5M outperforms the state-of-the-art VQA methods. Ablation studies are further conducted to verify the effectiveness of each module toward the proposed method. The source code is available at https://github.com/GZHU-DVL/HVS-5M.

16.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106084

RESUMO

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

17.
ACS Biomater Sci Eng ; 9(12): 6821-6834, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38011305

RESUMO

In recent years, conductive biomaterials have been widely used to enhance peripheral nerve regeneration. However, most biomaterials use electronic conductors to increase the conductivity of materials. As information carriers, electronic conductors always transmit discontinuous electrical signals, while biological systems essentially transmit continuous signals through ions. Herein, an ion-based conductive hydrogel was fabricated by simple copolymerization of the zwitterionic monomer sulfobetin methacrylate and hydroxyethyl methacrylate. Benefiting from the excellent mechanical stability, suitable electrical conductivity, and good cytocompatibility of the zwitterionic hydrogel, the Schwann cells cultured on the hydrogel could grow and proliferate better, and dorsal root ganglian had an increased neurite length. The zwitterionic hydrogel-based nerve guidance conduits were then implanted into a 10 mm sciatic nerve defect model in rats. Morphological analysis and electrophysiological data showed that the grafts achieved a regeneration effect close to that of the autologous nerve. Overall, our developed zwitterionic hydrogel facilitates efficient and efficacious peripheral nerve regeneration by mimicking the electrical and mechanical properties of the extracellular matrix and creating a suitable regeneration microenvironment, providing a new material reserve for the repair of peripheral nerve injury.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Materiais Biocompatíveis/farmacologia , Nervo Isquiático/fisiologia , Tecidos Suporte , Regeneração Nervosa/fisiologia
18.
Pain ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015635

RESUMO

ABSTRACT: Temporomandibular disorders (TMDs), collectively representing one of the most common chronic pain conditions, have a substantial genetic component, but genetic variation alone has not fully explained the heritability of TMD risk. Reasoning that the unexplained heritability may be because of DNA methylation, an epigenetic phenomenon, we measured genome-wide DNA methylation using the Illumina MethylationEPIC platform with blood samples from participants in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study. Associations with chronic TMD used methylation data from 496 chronic painful TMD cases and 452 TMD-free controls. Changes in methylation between enrollment and a 6-month follow-up visit were determined for a separate sample of 62 people with recent-onset painful TMD. More than 750,000 individual CpG sites were examined for association with chronic painful TMD. Six differentially methylated regions were significantly (P < 5 × 10-8) associated with chronic painful TMD, including loci near genes involved in the regulation of inflammatory and neuronal response. A majority of loci were similarly differentially methylated in acute TMD consistent with observed transience or persistence of symptoms at follow-up. Functional characterization of the identified regions found relationships between methylation at these loci and nearby genetic variation contributing to chronic painful TMD and with gene expression of proximal genes. These findings reveal epigenetic contributions to chronic painful TMD through methylation of the genes FMOD, PM20D1, ZNF718, ZFP57, and RNF39, following the development of acute painful TMD. Epigenetic regulation of these genes likely contributes to the trajectory of transcriptional events in affected tissues leading to resolution or chronicity of pain.

19.
J Plast Reconstr Aesthet Surg ; 86: 231-238, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782996

RESUMO

BACKGROUND: The oncologic safety of preserving the pectoralis major fascia (PMF) in patients with breast cancer remains controversial. In this study, we aimed to determine the impact of preserving the PMF on long-term oncologic outcomes in patients with breast cancer treated with immediate implant-based breast reconstruction (IBBR) following conservative mastectomy. METHODS: We selected women with early-stage breast cancer who underwent conservative mastectomy and submuscular IBBR in our center during 2014-2019. The propensity score matching method was used to create well-balanced fascia-preserved and fascia-removed groups. Locoregional recurrence-free survival (LRFS), disease-free survival (DFS), distant metastasis-free survival (DMFS), and overall survival (OS) rates were calculated using the Kaplan-Meier method and compared using log-rank tests between the fascia-preserved and fascia-removed groups. RESULTS: After matching, there were 219 patients in each group. The mean follow-up time was 64.8 ± 18.1 months for the fascia-preserved group and 64.9 ± 18.4 months for the fascia-removed group. There were no significant differences between the groups in terms of LRFS (91.3% vs. 93.8%; p = 0.818), DMFS (94.0% vs. 92.3%; p = 0.056), DFS (89.9% vs. 88.4%; p = 0.261), and OS (95.8% vs. 95.4%; p = 0.783) rates. In the fascia-preserved group, 61.5% of the locoregional recurrence events occurred within 2 years after surgery. CONCLUSION: Preservation of the PMF did not significantly impact the long-term oncologic outcomes in patients with breast cancer who underwent conservative mastectomy and IBBR. The PMF might be safely preserved in patients without suspicious tumor invasion into this fascia.


Assuntos
Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Neoplasias da Mama/patologia , Mastectomia/métodos , Músculos Peitorais/cirurgia , Pontuação de Propensão , Recidiva Local de Neoplasia/patologia , Mamoplastia/métodos , Fáscia , Estudos Retrospectivos
20.
Int J Biol Macromol ; 253(Pt 3): 126466, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659494

RESUMO

Early fire detection is an efficient method to mitigate disastrous fire loss. However, developing smart low-temperature fire-warning sensors that better diminish fire hazards, especially those caused by household appliances, is still challenging. Herein, a salts-modified chitosan (salts-modified CS) based sensor with integrated fire-warning and humidity-monitoring capability is proposed using an easy assembling method. This sensor can respond to temperatures as low as 50 °C and a flame within 2 s quickly and detect relative humidity (RH) range above 50 % at 50 °C and 75 °C sensitively. This system can be reusable for multiple ignitions and works in high-humidity environments (>50 %). Furthermore, the comparison between different salts-modified CS films is carried out to elucidate the mechanism of the formation of electric current under the joint driven by temperature and humidity. Moreover, real-time temperature and RH monitoring can be achieved with a wireless transmission section. This design shows a promising approach for multifunctional CS-based sensors and paves a path to developing a new generation of smart fire-warning detectors.


Assuntos
Quitosana , Umidade , Sais , Temperatura , Temperatura Baixa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...